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a b s t r a c t

Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily
basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand
and counteract this occurrence by the use of several and different defense mechanisms ranging from
free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase,
superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms.
The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage
and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions
or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB
oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through mis-
NA damage repair
iomarkers
ancer

repair or incomplete repair may lead to mutagenesis and consequently transformation particularly if
combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge
and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in
human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same
time, we discuss controversies related to potential artifacts inherent to specific methodologies used for
the measurement of oxidatively induced DNA lesions in human cells or tissues.
© 2011 Elsevier B.V. All rights reserved.
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. Sources of intracellular oxidative stress

DNA and cells of the human body are constantly exposed to
ttacks of oxidative nature. These attacks can be divided into two
road categories: exogenous and endogenous (Fig. 1). Exogenous
nd environmental sources of oxidation relate to specific expo-
ures of the organism to ionizing radiations like X-, �- or cosmic
ays and �-particles from radon decay, oxidizing chemicals and
VA solar light. Endogenous (intracellular) attacks correspond to
atural origin such as through cellular signaling and metabolic pro-
esses or during inflammation [1–4]. These endogenously induced
NA lesions can often reach a level much higher than the ones

nduced by environmental factors like even low doses of ionizing
adiation (<0.3 Gy) contributing significantly in the accumulation of
utations in cells and tissues [5–7]. During these attacks, although

ot in all cases, the primary damage is being induced by reactive
xygen species (ROS) and reactive nitrogen species (RNS). Exam-
les range from the hydroxyl radical (*OH), O2

•−, singlet oxygen
1O2) and peroxynitrite to others [1,8]. Intracellularly, ROS are cre-
ted as a natural byproduct of oxidative metabolism (Fig. 1). ROS
re constantly generated in mitochondria as respiration byprod-
cts (1–5% of consumed O2) and in general are accepted as the
ajor source of oxidative injury in all aerobic organisms. Another

ource of constant generation of free radicals which is usually
nderestimated is the chronic exposure to viral infections [9]. For
xample, in the case of hepatitis viruses there is an established
onnection between chronic infection and induction of oxidative
tress. Different groups have associated a variety of viruses with
ncreased oxidative stress, DNA damage and mutagenic rate [9].
his high intracellular oxidation status in viral infections consists
f decreased antioxidant enzymes like catalase, glutathione per-
xidase, glutathione reductase as well as high level of hydroxyl
adicals. Although there are numerous differences between exoge-
ous and endogenous attacks, the main differences are the levels
nd complexity of DNA damage which both are expected to be
ower in the case of intracellular stress [4,10].

Oxygen is an important element that plays significant roles in
any processes of the human body including cellular metabolism,

ntercellular and intracellular signaling and acts as a key compo-
ent for an effective immune system and response [11]. Although
eneficial, it is accepted that oxygen, through ROS generation,
an react with DNA, proteins and other cellular components and
an become problematic. The body is constantly trying to main-
ain homeostasis with the utilization of the immune system. The
mmune system is divided into two categories: adaptive and innate.
n adaptive immunity, highly complex cells are deployed and rec-
gnize antigens on foreign cells. Innate immunity is much broader
nd is designed to recognize common features on foreign cells
nd ultimately release more expansive white blood cells such as
acrophages and neutrophils. These cells are capable of releasing

ytokines which are chemicals that signal other cells to a specific
ite of damage or injury and aid with the induction of inflammation
12]. The phagocytic capability of macrophages utilizes oxidants
nd enzymes to degrade the foreign intruder. Nicotinamide ade-
ine dinucleotide phosphate (NADPH) oxidase is a complex inside
he macrophage that sanctions this to occur i.e. to the production of
ree radicals [13]. Inside this complex, the covalent bond between
toms is severed, creating an imbalance of electrons and when oxy-
en is one of these entities, creation of free radicals occurs. When
his free radical formation transpires with oxygen as one of the ele-

ents, it is known as reactive oxygen species (ROS). ROS interact
ith the biological molecules and disrupt the normal synthesis and
epair of DNA. This disruption is primarily associated with inhibi-
ion/inactivation of antioxidant key proteins as well as DNA repair
nzymes induced by ROS-damage to these biomolecules [14,15]
acrophages are one source of ROS, but it is important to note
arch 711 (2011) 193–201

that there are many other sources of the creation of ROS. ROS can
impact key mechanisms securing cell survival and the avoidance
of genomic instability [16]. Tumor growth increases inflamma-
tion and recent studies have indicated that in the presence of a
tumor or a malignancy in general in the organism, a high oxidative
stress status can be detected [12]. Through the bystander effect,
the microenvironment surrounding the tumor is not the only loca-
tion where this elevation is seen but also in distant organs. Recent
evidence by Redon et al. suggests the induction of complex DNA
damage i.e. double strand DNA breaks (DSBs) and non-DSB oxida-
tively generated clustered DNA lesions (OCDLs) by tumors growing
in mice is not limited to close proximity, but also to distant prolifer-
ative organs. This is seen primarily via the inflammatory response
pathway and specific cytokines such as chemokine (C–C) ligand 2
(CCL2) [17]. Exposure of an organism to chronic inflammation stress
can result to imbalances of tissue homeostasis and possible tumor
formation [18]. Typically most ROS have a short half-life and cause
damage locally but for example H2O2 has a relatively long half-life
and can travel long distances, causing DNA damage at distant sites
[19]. In addition, it may be pointed out that mostly hydroxyl radi-
cal (*OH) and to a lesser extent the lower-energy singlet molecular
oxygen (1O2) through specific targets (guanine, histidine, trypto-
phan, tyrosine) may react with DNA and proteins. In contrast O2* is
completely unreactive towards biomolecules while H2O2 requires
the presence of reduced transition metals such as Fe2+ to promote
the Fenton type reaction [20].

2. Types of oxidatively induced DNA lesions

The oxidatively induced DNA damage associated with ROS typi-
cally are apurinic/apyrimidinic (abasic) DNA sites, oxidized purines
and pyrimidines, single strand (SSBs) and double strand (DSB)
DNA breaks. Two of the most common endogenous DNA base
modifications are 8-oxo-7,8-dihydroguanine (8-oxoGua) and 2,6-
diamino-4-hydroxy-5-formamidopyrimidine. Both originate from
the addition of the hydroxyl radical to the C8 position of the guanine
ring producing a 8-hydroxy-7,8-dihydroguanyl radical which can
be either oxidized to 8-oxoGua or reduced to give the ring-opened
FapyGua [2,21]. The frequency of the damage is dependent on the
quality and level of oxidative stress as well as other factors. It is
accepted that the alterations in DNA from 8-oxodG is part of the
recognition site utilized by DNA glycosylases to detect damaged
guanine bases. For example, FapydG is currently considered as the
most prevalent guanine-derived lesions formed under low oxygen
(O2) conditions i.e. hypoxia [22–24]. Interaction of hydroxyl radical
with pyrimidines (thymine and cytosine) at positions 5 or 6 of the
ring, can produce several base lesions and two of the most abun-
dant and well known products, 5,6-dihydroxy-5,6-dihydrothymine
(thymine glycol, Tg) and 5,6-dihydroxy-5,6-dihydrocytosine (cyto-
sine glycol). As discussed in the next section, 8-oxodG and Tg are
often chosen as reliable markers of oxidative stress in a variety
of biological systems ranging from bacteria up to human cancer
patients. Especially in the case of 8-oxodG, this lesion has been
reported to exist at high steady levels in genomic, mitochondrial
and telomeric DNA and RNA [25]. In addition, 8-oxodG and Tg
have been both utilized as markers for indication of high levels
of oxidative stress and damage in the human body in association
with human cancer [2]. These lesions ultimately are not lethal to
the cell, but are considered to be highly mutagenic. Although the
creation of an altered base or base loss is not expected to result into
a significant destabilization of the DNA molecule, a localized per-

turbation of the stacking forces, hydrogen bonds and interaction
with water molecules and/or positive ions like Na+ surrounding
the DNA double helix is expected [22,26]. It is generally accepted
that this localized destabilization and conformational changes of
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Fig. 1. Association of persistent oxidatively generated DNA lesions with human cancer. Cells in every organism are getting exposed on an everyday-basis to various oxidizing
and damaging agents ranging from exogenous sources like environmental, medical, diagnostic ionizing (IR) and non-ionizing radiations (X- or �-rays, �-particles from radon
decay, UVA radiation) or chemicals to intracellular (endogenous) sources of oxidative stress primarily produced by O2 metabolism, immune responses and inflammation.
The final outcome is the production of reactive oxygen/nitrogen species (ROS, RNS) reacting with the DNA and producing various lesions and adducts (indirect effect). IR
can damage DNA also by direct energy deposition and ionizations. DNA damage can be induced also in neighboring or distant cells via an inflammation based mechanism
(bystander/distal effects). The first frontier of cellular defense against DNA damage consists of endogenous non-enzymatic radical scavengers like glutathione (GSH) and
vitamins like C, E, antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) as well as sophisticated and highly specified DNA
repair pathways. According to current status of knowledge, the major types of DNA damage and their repair are expected to be several DNA lesions like single strand breaks
(SSBs) and oxidized bases like 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 5,6-dihydroxy-5,6-dihydrothymine (thymine glycol, Tg) in a clustered (OCDLs) or single
(isolated) formation. All these lesions are expected to be processed primarily by base excision repair (BER) while the involvement of nucleotide excision repair (NER) cannot
be excluded. Single DNA lesions are expected to be repaired more efficiently than OCDLs which can be very challenging for the cell to repair. In many cases, the cell will bypass
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NA damage using specific DNA polymerases and enter DNA replication creating m
an induce cell death through the apoptotic pathway. Chronic exposure to DNA les
o malignant transformations (cancerous state).

he DNA at the site of the DNA lesion are part of the recognition
echanisms used by the DNA glycosylases to detect the altered

uanine bases like 8-oxodG or FapydG [21,22]. Two other pyrimi-
ine lesions often detected in human patients as the result of the

nteraction of the hydroxyl radical *OH with the methyl group of
he thymine, are the 5-(hydroxymethyl)uracil and 5-formyluracil
2]. Again, although all these purine and pyrimidine oxidation
roducts are not considered lethal for the cell, they are usually
oncoding and highly mutagenic [27]. Through the hydrolysis of
he N-glycosidic bond of nucleotides in the DNA, the DNA base
s released and the phosphodiester backbone remains intact, ulti-

ately creating an AP site [28]. It must be stated that the most
revalent and characteristic abasic sites formed under oxidative

tress are expected to be 2-deoxyribonolactone and the so-called
4′ oxidized abasic site that arise from *OH-mediated hydrogen
bstraction at C1 and C4 of the 2-deoxyribose moiety of DNA
espectively [29]. Normal (transient) abasic sites arise mostly from
ns and chromosomal lesions. Alternatively the presence of unrepaired DNA lesions
an lead to mutations and genomic instability (pre-cancerous state) and eventually

the spontaneous (non-enzymatic) hydrolysis of the N-glycosidic
bond of purine 2′-deoxyribonucleosides that is much more labile
than that of pyrimidine 2′-deoxyribonucleosides. These transient
apurinic sites though cannot be considered per se as oxidatively
generated damage to DNA but they have been shown to accumulate
in cells and tissue at significant numbers that can reach or exceed
∼10,000/cell/day [30–33]. It is likely that a few *OH-mediated dam-
age to DNA including FapyGua and FapyAde may be considered as
potential precursors of apurinic sites since the opening of the imi-
dazole ring of the purine bases is known to lead to a pronounced
increase in the hydrolytic lability of their N-glycosidic bonds. This
occurrence is very common and can occur spontaneously or also
enzymatically as ‘repair intermediates’ after the removal (exci-

sion) of the damage base by a DNA glycosylase in base excision
repair (BER) [27,34,35]. AP sites are not considered lethal unless
in high levels and, if present are expected to block DNA poly-
merases therefore having a high mutagenic potential [36–38]. The
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wo main repair pathways for the processing of oxidatively gen-
rated DNA lesions are considered to be the BER and to a smaller
xtent nucleotide excision repair (NER) (Fig. 1).

With the interaction of the hydroxyl radicals with DNA, SSBs
ay occur. The mechanism consists of hydrogen abstraction from

he 2-deoxyribose leading to the formation of carbon based radicals
hich under the presence of oxygen can be converted to peroxyl

adicals (ROO•). The peroxyl radicals through different reactions,
an also abstract hydrogen atoms from sugar moieties thus lead-
ng to DNA strand breaks. The most possible pathway though for
nduction of strand breaks involves the *OH-mediated hydrogen
bstraction at C3′, C4′ and C5′ [29,39]. Peroxyl radicals are also
mplicated in lipid peroxidation mediated DNA damage and car-
inogenesis especially under the presence again of oxygen [40].
hrough a process known as Fenton type reaction, hydrogen perox-
de may be reduced by Fe2+ creating the reactive hydroxyl radicals

hich attack the DNA inducing base lesions and SSBs [28]. The
imultaneous attack of hydroxyl radicals to DNA and can cause
wo neighboring SSBs i.e. a DSB [41]. Pioneering experiments by

ard et al. have shown [41] that exposure of mammalian cells
o low-moderate concentration of H2O2 (50 �M) although produc-
ng SSBs, is not efficient to kill cells and therefore suggesting for
he first time the idea of ‘locally multiply damage sites’ (LMDSs)
41,42]. Only with much higher H2O2 concentrations (50 mM) cell
illing was observed due to the induction of DNA lesions (DSBs
nd other non-DSB lesions) presumably of higher complexity. The
amage to DNA is said to be clustered if the sites of impedi-
ent or damage are within two or more bases within few helical

urns (Fig. 1). Since then, quite a few laboratories have reported
he presence of non-DSB DNA clustered lesions in human cells or
issues and their accumulation under persistent or chronic oxida-
ive stress or DNA repair deficiencies as reviewed in [10]. The
irect association between these DNA lesions and the occurrence
f endogenous or exogenous oxidative stress lead to the most
roperly known idea of oxidatively generated non-DSB bistranded
lustered DNA lesions (OCDLs) [43]. Although the induction of
CDLs with radiation is expected to be significant based on theo-

etical and experimental evidence [44], the situation is still unclear
ertaining the mechanism(s) leading to accumulation of clusters
ndogenously as a result of high oxidative stress in the cell or tis-
ue [10]. Different studies suggest a great variation at the levels
f intracellular OCDLs ranging from a few clusters up to several
undred per Gbp (10–1000 clusters/Gbp) depending on the mea-
urement method followed and the type of cells or tissues used
or detection [17,45–49]. We believe that the microenvironment
redox status and repair efficiency) and origin of the cell or tissue
s also significant since mouse tissues for example are expected
o undergo always a higher state of oxidative stress compared
o human tissues based simply on the higher metabolic rate and
xygen consumption [50]. Although a possible overestimation of
ndogenous clusters maybe present at least in some cases, the
ighly varying numbers published on the steady-state levels of
ingle (non-clustered) oxidatively generated DNA damage (like
-oxodG: 0.2–8 lesions/Mbp) [3,51,52] would support the accumu-

ation of clusters in tissues. Overall, many review studies [1,51–53]
eporting expected levels of endogenous oxidatively generated
NA lesions in tissues or cells tend to agree that an expected low-
st number for one of the most frequent oxidative DNA lesions,
-oxodG, is ∼0.1/106 normal bases or 0.2 (8-oxodG)/Mbp. The spe-
ific frequency is presumably indicative of insignificant artifactual
xidation due to DNA isolation or measurement method. Con-
idering the fact that 8-oxodG constitutes only ∼5% of the total

umber of oxidized base lesions [52], we can derive the minimum
umber of ∼4 total oxidative lesions/Mbp. This number of total
xidative lesions gives an expected frequency of 0.4–0.8 oxybase
lusters/Mbp i.e. 400–800 clusters/Gbp (2400–4800 per cell assum-
arch 711 (2011) 193–201

ing an average genome size of ∼6 Gbp) based on the suggested ratio
of 5:1 to 10:1 of total oxidative lesions to oxybase clusters [54]. Of
course in these calculations, one should add the abasic DNA lesions
(AP sites) which are expected to be prevalent and repair resistant
[55,56] and also contribute to the total OCDL load present in the cell
or tissue. Recent studies by Chastain et al. [56] suggest a preferen-
tial AP site formation also in a clustered formation in genome areas
undergoing replication. The recent studies by Redon et al. [17],
also conclude that highly proliferative tissues are more suscepti-
ble to DNA damage induction (DSBs and OCDLs). Mechanistically,
we believe that the formation of OCDLs can be explained by the
abundance of intracellular ROS and oxidation events which can be
present also in a cluster formation [5]. In addition, several inde-
pendent studies suggest the possible formation of tandem lesions
(closely spaced in one strand) in cells through Fenton type reac-
tions and only one radical hit [57–59]. All these studies propose the
induction of these tandem lesions through electron transfer reac-
tions and oxidation of peroxyl radicals through intrastrand hole
migration. We cannot exclude such a mechanism also involved in
the induction of bistranded DNA clusters. But the existence of tan-
dem lesions by itself in cellular DNA would be detected as OCDLs by
all methodologies used for the measurement of bistranded lesions.
Interestingly and even in the case of OCDLs by ionizing radiation,
clusters are expected to be induced not really by a ‘two radical hit’
but one event [60,61]. Finally different studies have also reported
occurrence of endogenous DSBs (a form of bistranded clustered
DNA damage) in various cells or tissues [4,62–65].

It must be mentioned that in vivo, the final outcome of the inter-
action of DNA with ROS/RNS and distribution of DNA lesions is
practically determined by several factors like DNA repair, the levels
of antioxidant enzymes, DNA sequence and accessibility of free rad-
icals to react with DNA which is surrounded and usually protected
by histone proteins and tightly bound molecules (polyamines, thi-
ols, etc.) [66–69]. In addition, ROS/RNS can also attack except of the
DNA, various key cellular proteins like those participating in DNA
repair, cell cycle control etc. and severely affect their binding to
their DNA substrates i.e. damaged DNA or other proteins [15]. This
latter phenomenon of possible cellular protein destruction and/or
activation by free radicals is usually underestimated in cases where
the overall outcome and results of chronic exposure to oxidative
stress is studied.

3. Measurement of DNA damage in human cancer

Accumulating evidence supports the identification of oxida-
tively damaged DNA as a potential reliable indicator of oxidative
stress in an organism under the presence of a malignancy. Many
studies as presented in Table 1, show that in a variety of cancers
and tumors there is an ongoing battle between the persistence
of oxidative stress and generation of free radical species attack-
ing the DNA in one hand and the cellular defense mechanisms
(radical scavengers, antioxidant enzymes and DNA repair) on the
other. This can be manifested by the significant overexpression
of several antioxidant/repair enzymes in some malignant tissues
compared to controls in response to this high-oxidant status [70].
In many cases, the cellular defense network is overwhelmed by
the oxidative attack and the result is the induction of DNA lesions
at much higher levels compared to controls. The accepted impor-
tance and high necessity of accurate measurement of endogenous
DNA damage in different types of cells or tissues led to the employ-
ment of a variety of techniques and methods for the detection
of single oxidatively generated DNA lesions like 8-oxodG, Tg and

AP sites such as high performance liquid chromatography (HPLC),
liquid chromatography/tandem mass spectrometry (LC-MS/MS),
alkaline filter elution, single cell gel electrophoresis (SCGE or
Comet assay), adaptations of agarose gel electrophoresis and others
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Table 1
Major documented cases with elevated levels of oxidative stress and/or DNA damage in human malignancies.

Type of cancer Study model Findings

Benign prostatic hyperplasia
(BPH)

Human prostate glands Majority of patients had higher endogenous levels of typical *OH-induced products of
DNA bases and lower activities of antioxidant enzymes in BPH tissues than in
surrounding disease-free tissues of the prostate gland. When both catalase (CAT) and
superoxide dismutase (SOD) had decreased activities in BPH tissues, the increases in
the endogenous levels of DNA base products were most prominent [98].

Breast Human mammary tissues: normal,
benign hyperplasia (BH), ductal
carcinoma in situ (DCIS) and invasive
breast cancer (IBC)

A number of oxidative stress proteins, DNA repair proteins, and damage markers
overexpressed in human breast cancer tissue [99].

Breast Human breast cancer patients Significantly higher (P < 0.0001) levels of 8-hydroxydeoxyguanosine (8-oxodG) in DNA
from tumor compared to non-malignant adjacent tissue [100].

Breast Human breast cancer patients and cell
lines

Significantly elevated levels of 8-oxo-dG (P < 0.001) in malignant breast tissue
(invasive ductal carcinoma); also levels significantly greater (P = 0.007) in oestrogen
receptor positive (ORP) vs. ORP negative malignant tissue and cancer cell lines [101].

Breast Human breast cancer cell lines Defective DNA repair of 8-oxo-7,8-dihydroguanine in mitochondria of MCF-7 and
MDA-MB-468 human breast cancer cell lines [102].
Reduced repair of 8-oxo-7,8-dihydroguanine in the human breast cancer cell line,
HCC1937 [103].
Accumulation of oxidatively induced DNA damage in human breast cancer cell lines
following treatment with hydrogen peroxide [104].

Breast Human breast cancer cell lines Higher levels of endogenous oxidatively induced clustered DNA lesions (OCDLs) in
human breast cancer cell line MCF-7 compared to non-malignant MCF-10A [43].

Breast Breast cancer patients Mean levels of 5-(hydroxymethyl)-2′-deoxyuridine were significantly higher in blood
of women who had high risk or invasive breast lesions vs. women with benign lesions
[105].

Breast carcinoma Breast carcinoma patients In a study monitoring patients’ serum level of oxidative DNA damage prior and
following chemotherapy, thiobarbituric acid reacting substances (TBARS), total
nitrite/nitrate (NOx), nitrotyrosine (NT), and 8-oxodG concentrations significantly
increased prior to and following chemotherapy. Antioxidant enzyme activities and
total antioxidant capacity (TAS) were significantly decreased prior and following
chemotherapy [106].

Cervical cancer Cervical tissues in human patients Levels of 8-oxodG significantly increased (P < 0.001) in DNA from low-grade and
high-grade levels of dysplasia, compared to normal, although this did not correlate
with human papillomavirus status [107].

Colorectal cancer Colorectal cancer (CRC), benign
adenoma (AD) patients

Vitamin A, C, E levels decreased gradually in AD and CRC patients. 8-OxodG was found
increased in leukocytes and urine of CRC and AD patients. 8-OxoGua was higher only
in the urine of CRC patients while mRNA levels of OGG1 and APE1 increased in CRC
and AD patients [108].

Colorectal cancer Sporadic colorectal tumors patients Malondialdehyde and 8-hydroxy-2-deoxyguanosine (8-oxodG) levels were two-fold
higher in colorectal tumors compared to normal mucosa (P < 0.005). Seven of 10 DNA
tumor samples (70%) showing higher values of 8-oxodG also had genetic alterations at
different chromosomal loci [109].

Colorectal cancer Colorectal tumor patients Significantly higher levels of 8-oxodG in nuclear DNA of primary adenocarcinoma,
compared to surrounding non-tumorous tissue (P < 0.005) [110].
8-oxodG-specific lyase activity and expression were significantly up-regulated in
carcinoma; A proportional association between 8-oxodG levels and either 8-oxodG
lyase activity (P < 0.05) or expression (P < 0.05) present [111].

Colorectal cancer Colon cancer patients Significantly elevated levels of 8-oxodG lymphocyte DNA in colorectal cancer patients,
compared to controls accompanied by reduced levels of antioxidant vitamins [112].

Colorectal cancer Colorectal cancer patients Immunostaining for pATM, gammaH2AX and pChk2 revealed that all were
significantly expressed during tumor progression in advanced carcinoma (vs. normal
tissue for pATM (P < 0.05); vs. normal and adenoma for gammaH2AX (P < 0.05); and vs.
normal tissue for pChk2 (P < 0.05). Western blot analysis of gammaH2AX and pChk2
revealed that their level increased gradually during tumor progression and was
maximal in advanced carcinoma (vs. normal tissue; P < 0.05) [113].

Colorectal adenoma and cancer Colorectal adenoma and cancer
patients

Enzyme-linked immunosorbent assay revealed significant increased levels of 8-oxodG
(P = 0.045) associated with development of colorectal adenoma and cancer [114].

Gastric Gastric cancer patients Significantly higher levels of 8-oxodG in DNA from tumor-adjacent and tumor
adenocarcinoma tissues than in normal tissue (P < 0.001) of gastric cancer patients
[115].

Gastric Human patients with chronic gastritis
and gastric cancer.

Levels of 8-oxodG significantly elevated in DNA from chronic atrophic gastritis
(P = 0.0009), intestinal metaplasia (P = 0.035) and Helicobacter pylori infected (P = 0.001)
tissues, compared to unaffected controls [116].

Gynecologic cancer Female cancer patients Significantly higher (P ≤ 0.05) levels of urinary 8-oxodG in patients with gynecological
cancer compared to control subjects [117].

Hepatocellular carcinoma
(HCC)

HCC Patients Significantly (P < 0.005) elevated levels of 8-oxo-dG in DNA from peritumoral tissue
compared to tumor tissue in HCC. In contrast, patients with hepatic metastases
(non-HCC) or end-stage alcoholic liver disease showed no differences between the
corresponding two regions [118].

Acute lymphoblastic leukemia
(ALL)

Human lympocytes from ALL patients
and controls

Lymphocyte DNA levels of FapyGua, 8-oxoGua, FapyAde, 8-oxoAde, 5-OH-Cyt,
5-OH-5-MeHyd and 5-OH-Hyd significantly (P < 0.05) elevated in ALL compared to
control subjects [119].

Adult T cell leukemia
lymphoma; lymphoma,
acute leukemia and
myelodysplastic syndrome

Human leukemia and lymphoma
patients

Significant difference in levels of urinary 8-oxodG between adult T cell
leukemia/lymphoma and controls (P < 0.05); no significant difference in levels of
urinary 8-oxo-dG between lymphoma, acute leukemia and myelodysplastic syndrome
[120].
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Table 1 (Continued )

Type of cancer Study model Findings

Lung Human patients (18 with lung cancer
and 3 with normal cell lines)

H1650 and H226 cell lines presented the lowest expression of hOGG1 mRNA
expression therefore having severe reduction in 8-oxoG incision in nuclear and
mitochondrial extracts. Under expression of hOGG1 mRNA and hOgg1 protein
associates with decrease in mitochondrial DNA repair to oxidative damaging agents
[121].

Lung Lung cancer patients Lymphocyte DNA levels of 8-oxo-dG significantly elevated (P < 0.05) compared to
controls [122].

Lung Lung cancer patients An increase in urinary 8-oxodG/creatinine was found in non-small-cell carcinoma
(non-SCC) patients during the course of radiotherapy. SCC patients showed higher
levels of urinary 8-oxodG/creatinine than the controls (P < 0.05) [123].

Lung Patients with lung squamous cell
carcinoma (SCC)

In a pilot study of five subjects: levels of 8-OH-Ade elevated in tumor tissue of all SCC
patients vs. controls; levels of 8-oxoGua elevated in 4/5b patients; levels of FapyGua
elevated in 3 patients; 5-OHMeUra, 5-OH-Ura, 5-OH-Cyt, 2-OH-Ade levels elevated in
3/5 patients; 5-OH-Hyd, 5,6-diOH-Ura, FapyAde (DNA)-levels elevated in only 1/5 or
2/5 patients. Antioxidant enzyme (GPx, SOD and CAT) levels were lower in cancerous
tissues [124].

Liver, ovary, kidney, breast,
and colon

Tumor and adjacent normal tissues
from human cancer patients.

Higher non-DSB clustered oxidative DNA lesions (OCDLs) in many tumor vs. normal
tissues, importance of endogenous non DSB clusters in human cancer and their
potential use as cancer biomarkers [45].

Melanoma (cutaneous) Melanoma patients Nuclear and cytoplasmic 8-oxodG staining were evaluated in combination, total
8-oxodG resulted significantly associated with p53 (P = 0.026) and with nuclear or
total (nuclear and cytoplasmic staining evaluated in combination) surviving
immunoreactivity, with borderline significance (P = 0.095). In survival analysis,
Kaplan-Meier univariate analysis demonstrated that patients with tumors negative for
nuclear 8-oxodG had significantly longer survival time compared with those with
nuclear 8-oxodG-positive tumors (P = 0.032) [125].

Nasopharyngeal Human NPC cells All cases of NPC were positive for 8-NitroG, 8-oxodG and 94.7% were positive for INOS.
NPC samples exhibited significantly more intense staining for 8-NitroG, 8-oxodG and
INOS than those of chronic nasopharyngitis. Pathological stimulation of
nasopharyngeal tissue, caused by bacterial, viral, or parasitic inflammation, may lead
to nitrative and oxidative DNA lesions, caused by nitric oxide [126].

Prostate Male prostate cancer patients Significant increased risk was observed for individuals who carried 1 or 2 copies of the
variant allele of the XRCC-1 Arg399Gln polymorphism, compared with those who only
harbored the wild-type allele. Variability in the capacity of repairing oxidative DNA
damage influences susceptibility to prostate cancer [127].

Ovarian carcinoma Invasive ovarian carcinomas 8-oxodG, to be a powerful prognostic factor in ovarian carcinoma (Kaplan-Meier
survival log-rank-analysis P = 0.003). 8-oxodG also associated with poor differentiation
(P = 0.053), higher stage (P < 0.001) and non-optimal surgical outcome (P = 0.002) [128].

Renal cell carcinoma (RCC) RCC patients A 54% higher content of 8-oxodG was found in RCC than in the corresponding
non-tu
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71–75]. Experimental evidence suggests the presence of ‘back-
round’ oxidatively generated DNA lesions (e.g., abasic sites or
xidized bases) in human or animal cells and tissues at values rang-
ng from 100–10,000 lesions/Gbp [3,31,76–79]. In all cases, DNA
as to be isolated from the cells or tissues and therefore some
rtefactual DNA damage may be measured due to the unavoidable
xidation of DNA during extraction. There is a lot of controversy
nd debate about the steady-state levels of 8-oxoGua and in general
bout the oxidized bases steady-state level as reviewed in [4,10].
he measurement of 8-oxo-7,8-dihydroguanine (8-oxoGua) or its
elated 2′-deoxyribonucleoside (8-oxodGuo) is often used as an
ndicator of oxidation reactions to cellular DNA. Again, evidence
hat has been accumulated during the last decade suggests that sev-
ral of the methods used for detecting 8-oxoGua in cellular DNA
ave rise to erroneous conclusions due to artefactual oxidation
eactions for chromatographic methods (erroneous GC–MS mea-
urements) and lack of specificity for the immunoassays [52,80].
n addition another identified drawback although of much lower
mplitude than the previous, deals with artefactual oxidation reac-
ions during DNA extraction and subsequent work-up. There is a
onsensus for a higher steady-state values that are close to ∼1
-oxodGuo lesion per 106 normal nucleosides following several
SCODD reports [52,80] a few years ago and reviewed in [1]. How-
ver there is a discrepancy between the latter HPLC measurements

nd the values obtained using enzymatic assays which in fact are
bout 15-fold lower. This may be partially explained by a rela-
ively small contribution of occurrence of artefactual oxidation in
he HPLC assays and an incomplete digestion of oxidatively gener-
morous kidney, suggesting that the DNA of RCC is more exposed to ROS than is
A of non-tumorous kidneys [129].

ated tandem bases modifications as recently proposed by Bergeron
et al. [57]. Similar artifacts maybe present up to an extent with
all the electrophoretic methodologies used for the measurement
of DSBs and OCDLs in cells or tissues like non-denaturing Comet
assay or pulsed field gel electrophoresis [10,44]. In addition, the
prolonged periods of cell-lysis at temperatures equal and espe-
cially higher to 37 ◦C during DNA preparation can introduce the
problem of ‘heat-labile’ sites. These sites can be induced by ion-
izing radiation or other chemical agents within a clustered DNA
damage site and then are thermally converted to SSBs or DSBs and
therefore can be mistakenly measured as DNA damage [81]. Even
in the case of the �-H2AX foci methodology which can be used
very successfully for the in situ detection of DSBs, different stud-
ies suggest the possible induction of these foci at non-DSB sites
like degraded telomeres or in the absence of DNA damage [63,82].
Current electrophoretic techniques although rendering significant
information on the spectrum of clustered DNA damage have sev-
eral intrinsic problems especially related to the detection of small
DNA fragments leading to the underestimation of damage levels
[44]. All these experimental difficulties point to the need for the
development of an independent method for the accurate detec-
tion of clustered DNA lesions. Dynamic dielectric relaxation and
conductivity methods have been used in the past for the sensitive
detection of DNA damage and degradation, structure changes and

apoptosis-induced DNA fragmentation but have not been applied in
the case of complex DNA damage detection [26,83,84]. Specifically,
the technique of broadband dielectric relation spectroscopy (DRS)
is well established and one of the most widely applied non-invasive
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echniques used for probing the structure and function of a wide
ariety of biopolymers like DNA, proteins etc. as reviewed in [85].
ver the last thirty years, the DNA dielectric behavior in solution
as been investigated by many research groups. Measurements of
c conductivity have also been used in the past for the study of
adiation induced breaks in single stranded polynucleotides and
NA molecules. The observed changes in conductivity have been
ttributed to the liberation of counterions from these polymers as
result of the induced single strand breaks [86–88]. Dielectric mea-
urements have been also applied for the successful differentiation
f breast carcinoma to surrounding normal breast tissues [89]. But
s with all methods, a major difficulty for the use of DRS is the usual
igh conductivity of cell or DNA solutions giving rise to electrode
olarization phenomena [90].

. Conclusions and future directions

Many characteristic studies (Table 1) support the implication
f persistent or chronic oxidative stress and damage in human
arcinogenesis. Although they may suffer in some cases from a
ack of accuracy and a relative overestimation of the DNA lesions
etected, they pinpoint to the existence of a phenomenon i.e. the
arallel existence of a malignancy and oxidative DNA injury. The

dea of using several oxidatively generated DNA lesions (like 8-
xodG, Tg, AP sites and potentially OCDLs) as novel biomarkers of
xidative stress, chronic inflammation and susceptibility to can-
er gains more ground. The many well documented cases of higher
evels of DNA damage in malignant cells or tissues compared to
on-malignant controls definitely reveals a great potential in the
sage of oxidatively generated DNA damage biomarkers towards
rognostic and curative applications in cancer and inflammation
s shown in Table 1 and also in [72]. The alternative presenta-
ion of these data also as a percentage (%) of damage increase
n cancer patients (relative to controls) in many cases makes the
bove mentioned trend even more pronounced [91] and further
mphasizes the potential application of these novel biomarkers
ssociated with oxidative stress in a malignancy. Although no
nowledge of a definite mechanism exists on the occurrence of ele-
ated DNA damage in the presence of cancerous cells or a tumor
n the organism usually referred as ‘reverse-causation’ effect initi-
ted by tumor growth [92], all the above discussed mechanisms
f deficient DNA repair and/or antioxidant systems as well as
he induction of inflammatory responses may be involved. Onco-
enic changes induce a chronic inflammatory microenvironment
ithin and surrounding tumors including presence of inflamma-

ory cells like macrophages and inflammatory mediators such as
hemokines, cytokines and prostaglandins [12] as well as ele-
ated levels of endogenous oxidative stress and ROS production
3,93]. These ROS, produced either directly by tumors, or indirectly
ia inflammatory responses, can cause DNA damage in healthy
eighboring cells as well as distant sites (Fig. 1). Although no
irect and specific mechanistic insights can be derived from all
he above studies towards the exact role of oxidatively induced
NA damage, the conversion of unrepaired or misrepaired DNA

esions to mutations seems to be the driving force directing a
ell(s) to transformation and carcinogenesis [94]. The abrogation
nd/or deregulation of key DNA repair, cell growth and apoptosis
elated proteins play definitely a governing role in the promotion
f chromosomal instability and malignancy [16,95]. In addition,
ew molecular approaches like epigenetics and proteomics are
eeded that will allow us gain further mechanistic insights [96,97].
t the same time, the exploitation of new ‘cancer biomarkers’ in
he future will not only contribute significantly in early progno-
is but also in the structural design of new and more efficient
herapeutic regimes especially in oxidative stress-related malig-
ancies.
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